
Contract Templates And Contract

Automation Using LATEX
∗

Greg Kochansky†

August 21, 2013

Abstract

This overview describes how lawyers can use LATEX (a free, sophisti-
cated document preparation system) to create dynamic contract tem-
plates that include fill-in-the-blank form fields, automatic numbering and
re-numbering of nested clauses, and a system for easily toggling particu-
lar clauses on and off or selecting between alternative versions of clauses.
This workflow generates well-formatted PDF files that are safe and easy
to share with colleagues, clients, and counterparties.

1 Getting started.

Learning LATEX may seem a bit overwhelming for the uninitiated, but it is no
more difficult than learning basic HTML, search syntax for Lexis and WestLaw,
or even the dreaded Bluebook. There are rules. Some may seem a bit arbitrary
(although, in this case, they are very well thought out). Bottom line: this is a
bit of a challenge, but it is not brain surgery.

And, anyone with even a passing familiarity with some other flavor of “markup”,
whether it be HTML, XML, or even Markdown, will get the hang of LATEX
quickly. The syntax is very straightforward, and a Google search will yield an-
swers to most questions within the first five search results. We are dealing with
a very well-documented, very reliable markup language.

Also keep in mind that, as with any other document automation system,
setting up the templates is the hardest part. Once a template for a particular
type of contract has been created, the learning curve flattens out considerably for
those who just want to use that template. The creator can add comprehensive
annotations to a template file, and all the end user has to do is fill in some
transaction-specific language. So, all a law firm or organization needs is one
LATEX “expert” on staff. Everyone else just has to fill in a few blanks and press
a button to produce a final document.

∗ c© 2013, Greg Kochansky, all rights reserved.
†JD, Harvard Law School. AB in English, Princeton University. Licensed to practice law

in the State of New York and the Commonwealth of Massachusetts. Based in Cambridge,
Massachusetts, Greg can be reached at greg@greg-k.com and 646-465-4897.

1

2 Why on earth would anyone want to take this
approach?

In short, to avoid inefficiency, errors, inconsistencies, Microsoft Word in general,
Word’s “track changes” function in particular, and metadata.

1. Efficiency. Contract assembly automates repetitive tasks. If you are
generating many versions of a contract and only 15% of each document
contains unique content, then you have an opportunity to automate 85%
of the drafting process. The potential efficiency gain is enormous.

2. Limiting errors. You might think the typical “find-and-replace” strat-
egy is up to the task, but it really isn’t. How many times have you tried to
adapt a document in Word using “find-and-replace”, only to find, while
reviewing the final product, that you missed a few spots? Even worse,
what if you didn’t catch them before circulating the draft. It would be
beyond embarrassing to send a draft to a client containing names, ad-
dresses, or other information clearly left over from a prior engagement for
a different client. And divulging such information to a third party might
even be considered professional negligence.

3. Consistency. Sometimes you just want to change a clause or two in a
“form” contract that you are adapting for a particular purpose. Instead
of cobbling together clauses from a bunch of different sources, it makes
much more sense to have the most common options available to you within
a single template document. The workflow described here makes it very
easy, for instance, to toggle between different dispute resolution clauses or
mutual/unilateral indemnification provisions.

4. Avoiding Microsoft Word. A lot of lawyers do not enjoy using Mi-
crosoft Word. There are too many options scattered over far too many
“ribbons”. Fixing formatting issues gets in the way of drafting. And, typ-
ically, different people use Word styles and formatting in different ways,
leading to inconsistent results across a given organization. LATEX builds
an impregnable wall between content and formatting. If you centralize
your templates, then every single document will leave your office sporting
a consistent, professional “look”, not to mention easy-to-read typography
that beats anything Word can produce.

5. Stripping metadata. Metadata is a dangerous thing. It can and often
does lead to the exposure of information that ought to remain confidential.
Sure, there is third-party software like WorkShare Protect that will strip
metadata from Word documents. This functionality even exists in more
recent versions of Word itself (though the feature is buried in a sub-menu).
But why add an extra, easy-to-forget step to the process? PDFs are
inherently cleaner and safer to circulate than are Word documents.

6. Tracking changes. Transactional attorneys tend to love Word’s “Track
Changes” feature, but it is a terrible idea to rely on it in a contract nego-

2

tiation. Whether by accident or on purpose, it is so easy for a new change
to be accepted prematurely so that the other side misses the change com-
pletely. You can use DeltaView and other third-party applications as a
safety measure, but you can accomplish the very same thing with (much
safer) PDFs by using the latest version of Adobe Acrobat.

3 Acknowledgments

As I mentioned, a wide variety of online resources are available to anyone work-
ing with LATEX. In this overview, I have linked to the sources that showed me
how to create this template.

In terms of the overall approach, I am indebted to the groundbreaking “Legal
Markdown” repository built and maintained by Casey Kuhlman on GitHub.
Legal markdown uses Ruby and YAML, rather than LATEX, to accomplish text
substitution, conditional clauses, and automated clause numbering.

4 Meet your friendly LATEX editor (free down-
load, easy installation).

The only software you will need to duplicate this workflow is a text editor
capable of converting LATEX markup into a final PDF document. You have a
variety of options. I am suggesting Texmate here because it is easy to install
and use.

1. Download Texmate for Windows, MacOS, or Ubuntu.

2. Follow the applicable installation instructions.

3. Download the model template.

4. Locate the Texmate icon and start the program.

5. In the top menu, navigate to File, then Open. Navigate to wherever you
downloaded the example template and open it.

6. The template is just an example, not to be used as a real-world contract,
but you can alter the file as you see fit. To generate a PDF, return to the
top menu and navigate to Tools, then Quick Build (or press the F1 key).

7. The PDF output should open automatically. Using the icons at the top
right of the viewing window, you can print the document or open and save
it using your standard PDF viewer.

5 The model template.

To demonstrate how contract automation works in LATEX, this paper references
a sample template, which you can view here. It is a bare-bones non-disclosure

3

https://github.com/compleatang/legal-markdown
https://github.com/compleatang/legal-markdown
http://www.xm1math.net/texmaker/texmakerwin32_install.exe
http://www.xm1math.net/texmaker/TexmakerMacosxLion.zip
http://www.xm1math.net/texmaker/texmaker_ubuntu_12.04_4.0.3_i386.deb
http://www.xm1math.net/texmaker/download.html
http://www.gregkochansky.com/exampleNDA.tex
http://www.gregkochansky.com/exampleNDA.tex

agreement. I strongly advise against using it as-is. It merely demonstrates all
the features in this workflow. The template contains annotations to help the
user to better understand how it is structured. Also, here is a sample PDF
based on the template.

6 Key features of this workflow.

A usable contract template should allow you to enter all transaction-specific
information in one place, to toggle between those very few provisions that may
vary from deal to deal, and to automate the numbering and nesting of para-
graphs and sub-paragraphs.

1. Transaction-specific information. Toward the beginning of the tem-
plate file, all the “variables” appear in a section that looks like this:

% Define text to be substituted into the contract.

\newcommand{\TitleText}{}

\newcommand{\PartyOneLegalName}{}

\newcommand{\PartyOneEntityType}{}

\newcommand{\PartyOneEntityOrgState}{}

\newcommand{\PartyOneAddressOne}{}

\newcommand{\PartyOneAddressTwo}{}

\newcommand{\PartyOneEmailAddress}{}

\newcommand{\PartyOneSignatoryFirstName}{}

\newcommand{\PartyOneSignatoryLastName}{}

\newcommand{\PartyOneSignatoryPosition}{}

\newcommand{\PartyTwoLegalName}{}

\newcommand{\PartyTwoEntityType}{}

\newcommand{\PartyTwoEntityOrgState}{}

\newcommand{\PartyTwoAddressOne}{}

\newcommand{\PartyTwoAddressTwo}{}

\newcommand{\PartyTwoEmailAddress}{}

\newcommand{\PartyTwoSignatoryFirstName}{}

\newcommand{\PartyTwoSignatoryLastName}{}

\newcommand{\PartyTwoSignatoryPosition}{}

\newcommand{\StateLaw}{}

\newcommand{\VenueCity}{}

\newcommand{\VenueState}{}

Between the curly brackets at the end of each line, an end user of the
finished template simply enters the information that applies to the current
transaction. For example:

% Define text to be substituted into the contract.

4

http://www.gregkochansky.com/exampleNDA.pdf

\newcommand{\TitleText}{Non-Disclosure Agreement}

\newcommand{\PartyOneLegalName}{OldCorp, LLC}

\newcommand{\PartyOneEntityType}{Limited Liability Company}

\newcommand{\PartyOneEntityOrgState}{the State of New York}

\newcommand{\PartyOneAddressOne}{100 15th Avenue}

\newcommand{\PartyOneAddressTwo}{New York, NY 10000}

\newcommand{\PartyOneEmailAddress}{info@oldcorp.com}

\newcommand{\PartyOneSignatoryFirstName}{John}

\newcommand{\PartyOneSignatoryLastName}{Smith}

\newcommand{\PartyOneSignatoryPosition}{Member and Manager}

\newcommand{\PartyTwoLegalName}{NewCorp, Inc.}

\newcommand{\PartyTwoEntityType}{Corporation}

\newcommand{\PartyTwoEntityOrgState}{the State of Delaware}

\newcommand{\PartyTwoAddressOne}{1 14th Avenue}

\newcommand{\PartyTwoAddressTwo}{New York, NY 10000}

\newcommand{\PartyTwoEmailAddress}{info@newcorp.new}

\newcommand{\PartyTwoSignatoryFirstName}{Mary}

\newcommand{\PartyTwoSignatoryLastName}{Jones}

\newcommand{\PartyTwoSignatoryPosition}{President}

\newcommand{\StateLaw}{the State of New York}

\newcommand{\VenueCity}{New York}

\newcommand{\VenueState}{New York}

There are only a few simple formatting rules that apply. First, the variable
names cannot contain any characters other than uppercase and lowercase
letters: no numbers, no spaces, and no special characters. Second, when
specifying the replacement text for each variable, you have a bit more
freedom, but there are still some formatting rules to keep in mind. Spaces
are acceptable, as are numbers and special characters. However, it is
necessary to type certain special characters in a particular way so that
the LATEX interpreter does not read them as commands rather than as
literal text. This process is called “escaping”. Here are the ten special
characters that need to be “escaped”:

& % $ # _ { } ~ ^ \

In order for the processor to interpret these special characters literally,
they have to be typed in particular way. The first seven characters must
be preceded by a backslash:

\& \% \$ \# _ \{ \}

The final three characters require the use of a special syntax, which begins
with a backslash, followed by a descriptive verbal code.1

1Explanation here.

5

http://tex.stackexchange.com/questions/34580/escape-character-in-latex

\textasciitilde \textasciicircum \textbackslash

To call these variables in the body of the template, the template creator
types in the variable name, as it appears in the header section. If the
variable occurs before another word in the body of the text, then the
variable must be enclosed in backslashes. If the variable appears directly
before a punctuation mark in the body of the text, then a backslash only
need be appended to the beginning of the variable name. Compare:

This \TitleText\ is by and between

With:

This \TitleText.

There are also some special “backslash codes” that can be used in the
body of the document without being defined as a variable in the header.
The most useful code for contract-drafting is almost certainly the one
for specifying the current day’s date. Again, this special verbal code is
accompanied in the body text by either one or two backslashes, depending
on whether it appears directly before a punctuation mark. Compare:

This agreement is dated \today.

With:

\today\ this agreement was signed.

In the final document, any of these variables will be converted to the
appropriate text. For instance:

This Non-Disclosure Agreement is by and between

Or:

This agreement is dated August 20, 2013.

2. Conditional clauses. Sometimes a template creator may want the end
user of the template to have the option of choosing between a couple of
variations of a clause or toggling a particular clause “on” or “off”. Dispute
resolution clauses are a good example. In some cases, the user might want
to include an arbitration clause – perhaps one endorsed by the American
Arbitration Association, JAMS, or the ICC. In other cases, for whatever
reason, one or both parties may be more comfortable with a conventional
venue clause that requires court-based dispute resolution. In the example
template we are discussing here, the header contains a section that includes
two conditional clauses, one that toggles between a one-way and two-way
NDA format, and one that alters the dispute resolution language:

6

% Set conditional clauses.

\newcommand{\OneWayOrTwoWay}{two-way}

\newcommand{\ArbitrationOrCourt}{court}

The same rules from the previous section also apply to naming these con-
ditional clauses. We will focus on the dispute resolution clause:

\newcommand{\ArbitrationOrCourt}{court}

It probably makes sense to use a variable name that presents an either-or
choice between two options. In this case, the variable name makes clear
that the user can specify either “arbitration” or “court” to toggle between
the two different clauses.

In order for this toggling to work properly, the very beginning of the
template must include a particular “package” called “xstring”, a small
program that handles this sort of conditional processing. This line of code
is clearly marked for you in the template file we are discussing:

% This package processes the conditional clauses

\usepackage{xstring}

In the body of the document, you need to place the two possible clauses
in the appropriate location (in this case, as part of the boilerplate toward
the end of the contract):

\IfSubStr{\ArbitrationOrCourt}{arbitration}{\item {\bf Dispute

Resolution.} Any controversy or claim arising out of or relating

to this Agreement, or the breach thereof, whether sounding in

contract, tort, or otherwise, shall be settled by arbitration

administered by the American Arbitration Association under its

Commercial Arbitration Rules, and judgment on the award rendered

by the arbitrator(s) may be entered in any court having jurisdiction

thereof.}{\item {\bf Dispute Resolution.} Any controversy or claim

arising out of or relating to this Agreement, or the breach thereof,

whether sounding in contract, tort, or otherwise, shall be decided

solely and exclusively by State or Federal courts located in

\VenueCity, \VenueState.}

This syntax is less complicated than it may seem:

\IfSubStr{[Variable Name With a backslash at the beginning.]}{[The

code word for selecting the first option.]}{[The text of the first

option, including all formatting marks.]}{[The text of the second

option, including all formatting marks.]}

7

Thus, if you want to be able to toggle between two clauses, you can ac-
complish this with a single line in the header. To toggle among three or
more options for a particular clause, include a separate variable for each
clause. In the body of the document, include conditional syntax for each
variable, but leave the second option blank. With this approach, an end
user can toggle one of those clauses “on” while leaving the other ones set
to “off”.2

3. Automatic numbering. The “bullets and numbering” functionality in
Word can be maddening. It can interfere with your flow when drafting,
and it can lead to structural errors in your draft. LATEX offers a simple,
powerful system for auto-numbering. All ordered/numbered lists take the
form:

\begin{enumerate}

\item First item.

\item Second item.

\item Third item.

\end{enumerate}

In the final document, the markup above will generate a list that looks
like this:

1. First item.

2. Second item.

3. Third item.

You can nest sub-sections within any such section list:

\begin{enumerate}

\item First item.

\item Second item.

\item Third item.

\begin{enumerate}

\item First item.

\item Second item.

\item Third item.

\end{enumerate}

\end{enumerate}

In the final document, the markup above will generate a list that looks
like this:

1. First item.

2Explanation here.

8

http://en.wikibooks.org/wiki/LaTeX/Macros

2. Second item.

3. Third item.

(a) First item.

(b) Second item.

(c) Third item.

You can nest ordered lists four levels deep, which should be sufficient for
contract-drafting.3

4. Other formatting conventions. The other main formatting convention
to keep in mind is that conventional quotation marks will not produce
“smart” or “curly” quotation marks in the final document. Instead, for
open quotes, use either one backtick character (`, for single quotes) or two
backtick characters (``, for double quotes). For closed quotes, you use
either one apostrophe character (', for single quotes) or two apostrophe
characters ('', for double quotes).

As you will notice in the example PDF, certain text (Level-1 paragraph
titles, in particular) appears in boldface type. To accomplish this effect,
enclose text in curly brackets with the string \bf placed at the beginning,
inside the opening curly bracket:

{\bf This text will appear in bold.}

Finally, remember to include spaces after variables, typeface settings, and
other markup so that individual words do not run together in the final
document. A bit of trial and error is probably the best way to get com-
fortable with these conventions quickly.

7 Taking things a step further.

This is just an introduction to the possibilities when using LATEX for legal docu-
ment automation. A wide array of packages and techniques are available to add
functionality beyond what is described here. Some fruitful areas for development
include:

1. Clause libraries. It is possible to incorporate external text strings into a
LATEX file, which makes possible sophisticated, centralized clause libraries
for boilerplate and other frequently-used provisions.

2. Pop-up definitions. Some packages, including “cooltips”, allow for the
creation of “pop-up” windows that appear when a reader hovers over a
particular word or phrase in the document. Using this functionality, it
would be possible to include a “pop-up” definition for every instance of

3Explanation here.

9

http://www.gregkochansky.com/exampleNDA.pdf
http://en.wikibooks.org/wiki/LaTeX/List_Structures

a defined term in the document. Then, anyone reviewing the PDF could
reference the definition of any defined term without having to flip back to
the definitions section of the contract.

3. Customized formatting. The template described here uses relatively
“vanilla” formatting. Templates allow for considerable customization.
Digging even deeper, it is possible to create brand new document styles,
which give the creator complete control over all aspects of a document’s
formatting.

4. Export to other formats. In this use case, the markup is exported only
in PDF format. Using Pandoc or other document processing utilities, it
is possible to generate outputs in a variety of other formats (including the
Word *.docx format and OpenOffice *.odt format).

8 Conclusion

This introduction barely scrapes the surface when it comes to legal document
automation using LATEX. Importantly, these automation techniques are not con-
fined to contract-drafting. They can be applied to any type of legal document,
including corporate formation documents; opinion letters; briefs, pleadings, and
judicial opinions; and all manner of correspondence. When you consider how
much repetitive language appears in legal documents, and the many problems
that can arise in the typical, Word-based workflow, it is worth giving a bit more
thought to an alternate approach like this one.

Thanks to the simplicity of the markup, the availability of powerful packages
that extend functionality, and the wealth of excellent (and free) documentation,
I believe that any lawyer or paralegal with the will to do so can construct a
robust document automation system using this method.

10

	Getting started.
	Why on earth would anyone want to take this approach?
	Acknowledgments
	Meet your friendly LaTeX editor (free download, easy installation).
	The model template.
	Key features of this workflow.
	Taking things a step further.
	Conclusion

